
Economic Cost Model for Software Engineering
Simulation

E.Geetha Rani#1, K.Swarupa Rani*2, D.Anusha#3, Dr.M.V.L.N.Raja Rao*4

#1 , #4 Infornation Technology,

Gudlavalleru Engineering College, Gudlavalleru,
JNTUK, INDIA

#3 &*2 Information Technology,

PVPSIT,Vijayawada, jntuk, INDIA

ABSTRACT: The common software engineering education
method of theory presented in lectures along with application of
these theories in an associated class project is insufficient, on its
own, to effectively communicate the complex, fundamental
dynamics underlying real-world software engineering processes.
We are constructing a new approach to software engineering
education that is based on the use of an educational software
engineering simulation environment. However, a major
challenge in developing such an environment lies in creating an
accurate model of the real world upon which the simulation is
based. In order for the simulation to be a successful educational
tool, this model must be based on an appropriate economic
model, must consist of the correct “fundamental laws” of
software engineering, and must encode them quantitatively into
accurate mathematical relationships, thereby correctly
embodying and portraying all of the various factors, dynamics,
and cause and effect relationships present in the real-world
software engineering process.

Keywords: Software Engineering Education, Simulation

1 GOAL
Given the ubiquitous nature of software in our society, it
should come as no surprise that the discipline of software
engineering has taken a prevalent role, both in academic
research and in industrial practice. In parallel, of course,
software engineering education has received significantly
increasing amounts of attention as well, evidenced by, for
example, a special track at the main conference on software
engineering [2], a separate conference dedicated to software
engineering education [18], the SWEBOK project [4], special
journal issues dedicated to the topic [1, 5], and even the
introduction of specialized software engineering degrees [8,
15]. Clearly, all of these efforts are aimed at creating an
understanding of the issues involved in teaching software
engineering, as well as at sharing approaches to further
improve the way software engineers are educated. Despite all
of this attention, a remarkable difference remains between the
software engineering skills taught at a typical university or
college and the skills that are desired of a software engineer
by a typical software development organization. At the heart
of this difference seems to be the way software engineering is

introduced to students: general theory is presented in a series
of lectures and put into (limited) practice in an associated
class project. While at first this seems to be a reasonable
approach, practical, didactic, and timing reasons necessarily
lead to the fact that such lectures and class projects often lack
an in-depth treatment of the following five issues critical to
any real world software engineering project:
��Software engineering is non-linear.
��Software engineering often has multiple, conflicting

goals.
��Software engineering continuously involves choosing

among multiple viable alternatives.
��Software engineering involves multiple stakeholders.
��Software engineering may exhibit dramatic

consequences.
In essence, all of these issues relate to the overall process of
software engineering, which is difficult to teach in lectures,
since it remains abstract, and difficult to teach in a class
project, since it requires a project of significant size to
highlight the issues. Nonetheless, educating students in these
issues is essential to creating a full understanding of the depth
and complicated nature of software engineering. Simulation
is a powerful training technique that has been successfully
used in many different settings. Before airline pilots actually
fly a plane, they extensively train in simulators. Military
personnel practice their decision-making and leadership
abilities in virtual-reality simulation environments. In each of
these cases, simulation provides significant educational
benefits: valuable experience is accumulated without the
potential of the dramatic consequences that may occur in case
of failure. Moreover, unknown situations can be introduced
and practiced, experiences can be repeated, alternatives can
be explored, and a general freedom of experimentation and
“play” is promoted in the training exercise. Our research
project is based on the hypothesis that simulation can bring to
software engineering education many of the same benefits
that it has brought to other domains. Specifically, we believe
that simulation is the ideal platform upon which to teach the
above issues. As compared to lectures, simulation has the
distinct benefit of showing and teaching students cause and

E. Geetha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5123 - 5127

5123

effect in a practical manner: if they make a wrong decision in
the simulation, it will (hopefully) become clear to them
because the simulation environment will show them certain
undesired effects. As compared to a class project, simulation
has the distinct benefit of being much quicker: one does not
have to wait days, weeks, or even months to see the effects of
a decision, since the simulation environment is able to
operate at a faster pace than real life. In essence, simulation
allows a practical experience of the software process without
the additional, distracting burden of having to produce project
deliverables. In order to be an effective educational tool,
simulation must be based on a model that accurately
embodies the dynamics of the real world process it
represents. For a software engineering simulation in
particular, this accuracy is attained by successfully
communicating each of the five fundamental issues
mentioned previously. An interesting observation to make is
that these issues generalize to other domains. However, a
number of difficulties arise in adopting such cost models for
our purposes. In this paper, we highlight some of these
difficulties and identify some avenues of addressing them.

2 ARCHITECTURE
Our simulation environment provides the user with a game-
like experience: all output is presented in a graphical user
interface, which realistically portrays all of the characters,
surroundings, artifacts, causes and effects of decisions, and
other various details present in a real world software
engineering environment. As such, our environment is similar
to games like SimCity and The Sims, and builds on many of
their lessons learned in providing the desired level of
functionality while maintaining a graphical and entertaining
environment in which users can learn effectively. Perhaps the
most important of these lessons is the fact that, while the user
controls the game through the perspective of a single
character, other characters behave autonomously and
typically interfere with the user in achieving their goals 100
percent. Our simulation environment employs this tactic as
well: while a user may control, for example, the character of
a project manager, the simulation environment may direct
that some of the employees check in sick periodically, or are
not as productive as they should be, or spend too much time
at the coffee machine talking. Like any other simulation
environment, our educational Software engineering
environment is based on the basic simulation process shown
in Figure 1.

Figure 1: Basic Simulation Process.

At each step in the simulation, input to the simulation engine
consists of commands provided by the user of the simulation.
The simulation engine uses this input, along with the
simulation model and the current states of the model, to, step-
by step, calculate the state of the simulation as it progresses.
The output is then provided to the encompassing simulation
environment, which graphically displays the result.

3 MODEL
A simulation model consists of a set of mathematical and
logical relationships that, collectively, represent the rules
underlying the behavior of the real-world process it
embodies. Any simulation environment is driven by such a
model, and our simulation environment is no exception to this
rule. In fact, its accuracy and effectiveness in achieving its
educational purpose strongly depends on the characteristics
of this underlying model. Because of this importance, the
creation of the model is a rather challenging process.
Specifically, four major questions need to be researched
regarding the requirements, design, implementation, and
operation of the model. What kind of model is needed? Given
the five characteristics of software engineering (non-linear,
multiple conflicting goals, multiple viable alternatives,
multiple stakeholders, and dramatic consequences) it is clear
that the software engineering process can be viewed as a
constraint satisfaction problem. To model this kind of
problem, a generic mathematical model can be adopted, but
several of the approaches developed to model aspects of
software engineering with an economic cost model apply as
well. As such, we are faced with the question of which model
(or integrated set of models) to use to drive our simulations.
Two of the most important requirements are that the model is
incremental and modular. Instrumentality is model state input
output simulation engine needed such that the model can be
used on a step-by-step basis, rather than as a “prediction”
kind of model that only allows a single run-through (e.g.,
COCOMO [6], or a probabilistic model [16]). Modularity is
needed because we plan to develop many different
simulations, which, over time, we expect to integrate in large-
scale simulations. Thus, it is required that the partial models
we develop can be integrated with relative ease. What are the
“fundamental rules” of software engineering and how from
where can they be discovered? Like any other discipline,
software engineering has many underlying empirical rules.
For example, it is well known that adding people to a project
that is already late typically makes that project later, due to
the increased necessity for communication between
personnel. Our simulation environment aims to provide a
real-world experience and, thus, its model must be solidly
rooted in such real-world phenomena. Unfortunately, the set
of rules of software engineering is published in a wide variety
of media (software engineering journals and conferences,
computer-supported collaborative work journals and
conferences, books, trade literature, etc.) and no single source
exists in which all are compiled. Therefore, one of the
challenges in creating an accurate model lies in researching,
identifying, and compiling a list of the fundamental rules of

E. Geetha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5123 - 5127

5124

software engineering. How can the “fundamental rules” of
software engineering be encoded into an executable model?
Once we have chosen a particular kind of model, several
questions about the parameterization of the model follow:
What are the constraints and the variables whose values must
obey those constraints? What are the constants that influence
the values of those variables? What are the equations that
embody the cause and effect rules determining the behavior
of the model? How are the (often conflicting) overall goals of
software engineering and the individual goals of each entity
involved in the simulation encoded into the model? As an
example, consider the following simulation scenario that
illustrates the software engineering “law” which says that
skipping the design phase leads to highly problematic
integration:
The developers proceed directly from the requirements phase
to implementation, skipping the design phase completely.
When they begin to integrate, the error rate of the software
skyrockets, the quality of the software drops dramatically,
and each developer’s mood plummets. They must
Spend several months (while the cost meter is ticking away)
integrating all of the different developers’ pieces of code
before the system works.
Expressed qualitatively, this situation is easily described and
well understood. However, in order to make this scenario
executable in a simulator, a quantitative representation of its
behavior, including mathematical equations describing the
relationships between all of the different variables and factors
involved, is needed. For instance, exactly how many person-
months longer does development take when the design phase
is skipped? Precisely how many more bugs are present in a
piece of software that was developed without a design phase
than one that was thoroughly designed before it was
implemented? How much does each developer’s motivation
actually drop as the result of such a situation, and how, in
turn, does this affect the resulting productivity of the team? In
essence, an exact schema with which to evaluate the precise
cost of each action the player can take must be adopted. We
intend to leverage information from sources such as
COCOMO [6] in creating models that are as close to the real
world as possible, neither overplaying nor underplaying the
effects portrayed in the simulation. How does the model
work? A simulation used for education in particular needs to
guide the player in implicit ways in regards to such issues as
what steps to take, which decisions to make, and which
choices are available for each decision. It also needs to have
the ability to initiate the actions of characters in the game that
are not controlled by the user, accept input from the user, and
somehow balance the interaction between the two. Two
challenges lie in accurately and efficiently incorporating this
requirement into the actual execution of the model. First, it
requires that our model make provisions not only for the
overall behavior of the process, but also for the independent
behaviors of each individual entity involved in the process.
Moreover, the model must consider the interactions between
these entities on both an individual basis and in terms of an
overall net effect. A model with these capabilities is quite

different from cost models introduced so far. Thus, careful
evaluation of existing models, as well as considerable
extension to one or more of these models, will be required to
achieve the necessary functionality.

4 RELATED WORK
This research draws from several related areas, most notably
software engineering education, process simulation, games,
and economic cost models for software engineering. This
section briefly discusses the contributions in each area that
are relevant to the construction of our simulation environment
Software Engineering Education It is clear that educational
methods in software engineering are still very much
dominated by the traditional model of teaching theory in a
series of lectures and putting that theory into (limited)
practice in an associated class project. Pressured by industry
to deliver students who are more in tune with recent advances
and new technologies, as well as students who are more adept
at understanding the difficulties involved in the software
process, numerous variations on this basic method of
software engineering education have been developed [7, 10,
14]. Several of these approaches have incorporated
simulation, the most advanced of which is represented by
SESAM, a simulation environment for software engineering
education that has been applied in classroom settings [11].
However, compared to the research we propose, SESAM is
limited in functionality. First, SESAM’s play is linear in
nature, following, in order, each step of the software life
cycle. Second, SESAM is text-based and lacks any kind of
“fun” graphical user interface. Third, the models developed to
date are limited and are typically based on only a few
different roles and rules of interaction. Fourth, a player can
only play the role of a project manager no controls are
provided for any of the other (simulated) characters. Despite
these drawbacks, SESAM’s models do provide a source of
some well documented rules of software engineering, and its
simulation engine may be reusable for our needs.
Process Simulation Many software process simulations have
been developed and used to analyze the characteristics and
behavior of the process being modeled and to predict the
effects of process changes [3, 13]. These all operate
according to the same basic philosophy of creating a model of
a real-world process, choosing a set of input parameters,
running the model, and examining the outputs together with
traces of the simulation to understand the workings of the
environment. Despite the fact that these simulations are
passive in that they run without interruption until finished, the
models and the rules underlying those models are pertinent to
our simulations since they share the purpose of modeling real
world phenomena.
Games Simulation games represent a tremendous source of
experience that can be leveraged in creating models for an
educational software engineering simulation environment. A
class of games that is particularly relevant is the one derived
from the so-called “adventure games” of the olden days now
represented by such popular games as Sim-City, The Sims,
Escape from Monkey Island, Myst, Ultima Online, various

E. Geetha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5123 - 5127

5125

MUDs and MOOs, and many others. In these games, players
work towards achieving certain, sometimes conflicting goals,
by living their “virtual lives” in such a way that they must
make tradeoffs in choosing to work towards certain goals
while ignoring others, much like the process of software
engineering. These games also illustrate many examples of
good and effective design that can be used in our simulation
environment. They are fun to play, encourage
experimentation, usually have an excellent graphical user
interface, have immediate as well as time-delayed cause and
effect relationships, and bring the player into unexpected,
unknown situations that need to be resolved. Moreover, the
models upon which these games are based exhibit all of the
desired characteristics required for our educational software
engineering simulation environment:
��They are non-linear. Multiple events happen at the same

time; one must frequently interrupt certain activities to
tend to others; and generally playing the game in the
same way every time will not lead to the same results,
due to the presence of several random factors in the
simulated characters and events.

��They involve multiple, conflicting goals. As explained
previously, the games involve optimizing multiple goals
that sometimes interfere with each other. Player’s actions
inherently weigh certain goals as more important than
others, and generally lead to certain goals that are
attained and others that can only be partially fulfilled.

��They allow for the exploration of alternatives. All
games allow a player to save the state of the game, in
effect providing a checkpoint ability that can be
leveraged to explore different directions without
committing oneself—simply returning to the saved state
allows for exploration of a different alternative.

��They generally involve multiple stakeholders. In some
games, these stakeholders are represented by the
different players that each try to optimize their own
results. In other, single-user games, the stakeholders are
provided by the game simulation. For example, SimCity
has unions and Green Party representatives that the
player must keep happy in making decisions regarding
city planning.

��They exhibit dramatic consequences. Although not real,
the graphical illustration of these dramatic consequences
(which range from the player actually being killed, to
buildings being destroyed by natural disasters, to dirty
houses being invaded by rats) has a profound impact on
the player. Thus, since these game models exhibit the
desired characteristics of our simulations, we intend to
leverage these kinds of models in the creation of our
environment.

Economic Cost Models for Software Engineering. Several
economic models of the software engineering process, based
upon such concepts as Net Present Value [12], financial
portfolio analysis [9], and Return on Investment [17], have
been developed and applied to evaluate various aspects of
software development projects. These have all been created
mainly for the purposes of either facilitating more accurate

software project planning, supporting managers in making
decisions about software projects, or predicting the effects of
process changes. Each of these models accomplishes its
purpose by estimating overall net measurements of the
process, such as development time, cost, and quality. The
obvious relevancy of this domain to our research lies in our
intended adoption of one of these models as a basis upon
which to create our simulation model. However, these models
in their current state do not fit the needs of our simulation
environment, namely, an incremental nature of operation, the
capacity to be decomposed into partial models, and the ability
to recognize individual entities and their interactions with
each other. Nevertheless, it is expected that investigation of
these models will yield valuable knowledge that can be used
in the creation of our simulation model, and that by
incorporating and extending one of more of these models, one
suitable for our needs can be developed.

5 CONCLUSION
We are constructing a new approach to software engineering
education that integrates software process simulation,
simulation games, and economic software engineering cost
models into an educational software engineering simulation
environment. This environment addresses the problems
inherent in the current methods of software engineering
education by effectively teaching students the complex, yet
fundamental issues and dynamics that underlie the software
engineering process. We have begun to take the first steps in
building this environment by performing an extensive survey
of software engineering journals, conference proceedings,
workshop proceedings, and books, as well as literature from
other related disciplines, in order to collect the fundamental
rules of software engineering. It is this set of rules that will
form the basis for our simulation model. Challenges lie ahead
in encoding these rules into an executable model, choosing a
particular kind of simulation model, and tailoring the
simulation to meet the specialized, educational requirements
for this particular environment. However, as demonstrated in
this paper, their application is not as straightforward as one
would ideally like. Nonetheless, it is our belief that adapting
one of these cost models is more efficient and will lead to
better results than simply building a simulation model from
scratch.

REFERENCES
1. The Journal of Systems and Software. Vol. 49. 1999: Elsevier Science Inc.
2. Proceedings of the 22nd International Conference on Software

Engineering. 2000: ACM.
3. Abdel-Hamid, T., Lessons Learned from Modeling the Dynamics of

Software Development. Communications of the ACM, 1989. 32(12): p.
1426-1438.

4. Bagert, D.J., et al., Guidelines for Software Engineering Education
Version 1.0. 1999, Carnegie Mellon Software Engineering Institute:
Pittsburgh, Pennsylvania.

5. Balci, O., Annals of Software Engineering. Vol. 6. 1998: Baltzer Science
Publishers.

6. Boehm, B.W., et al., Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0. 1995, University of Southern California.

E. Geetha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5123 - 5127

5126

7. Boehm, B.W., et al., A Stakeholder Win-Win Apprach to Software
Engineering Education, in Annals of Software Engineering, O. Balci,
Editor. 1998, Baltzer Science Publishers. p. 295-321.

8. Boldyreff, C., The University of Durham BSc in Software Engineering and
Proposed MEng in Software Engineering: A Position Paper, in
Proceedings of the Thirteenth Conference on Software Engineering
Education and Training, S. Mengel and P.J. Knoke, Editors. 2000,
IEEE Computer Society. p. 189.

9. Butler, S., et al., The Potential of Portfolio Analysis in Guiding Software
Decisions, in Proceedings of the First Workshop on Economics-Driven
Software Engineering Research. 1999.

10. Dawson, R., Twenty Dirty Tricks to Train Software Engineers, in
Proceedings of the 22nd International Conference on Software
Engineering. 2000, ACM. p. 209-218.

11. Drappa, A. and J. Ludewig, Simulation in Software Engineering
Training, in Proceedings of the 22nd Internation Conference on
Software Engineering. 2000, ACM. p. 199-208.

12. Erdogmus, H., Comparative Evaluation of Software Development
Strategies Based on Net Present Value, in Proceedings of the First
Workshop on Economics-Driven Software Engineering Research. 1999.

13. Madachy, R., System Dynamics Modeling of an Inspection- Based
Process, in Proceedings of the Eighteenth International Conference on
Software Engineering. 1996, IEEE Computer Society.

14. Mayr, H., Teaching Software Engineering by Means of a "Virtual
Enterprise", in Proceedings of the 10th Conference on Software
Engineering. 1997, IEEE Computer Society.

15. McCracken, M., et al., A Proposed Curriculum for an Undergraduate
Software Engineering Degree, in Proceedings of the Thirteenth
Conference on Software Engineering Education and Training, S.
Mengel and P.J. Knoke, Editors. 2000, IEEE Computer Society. p. 246-
255.

16. Padberg, F., A Probabilistic Model for Software Projects, in Proceedings
of the 7th European Engineering Conference held jointly with the 7th
ACM SIGSOFT Symposium on Foundations of Software Engineering.
1999, ACM. p. 109-126.

17. Raffo, D., J. Settle, and W. Harrison, Estimating the Financial Benefit
and Risk Associated with Process Changes, in Proceedings of the First
Workshop on Economics- Driven Software Engineering Research.
1999.

18. Ramsey, D., P. Bourque, and R. Dupuis, Proceedings of the Fourteenth
Conference on Software Engineering Education and Training. 2001:
IEEE Computer Society.

E. Geetha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5123 - 5127

5127

